Periodic Solutions for Some Partial Functional Differential Equations
نویسنده
چکیده
We study the existence of a periodic solution for some partial functional differential equations. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida condition. In the nonhomogeneous linear case, we prove the existence of a periodic solution under the existence of a bounded solution. In the nonlinear case, using a fixed-point theorem concerning set-valued maps, we establish the existence of a periodic solution.
منابع مشابه
Application of the tan(phi/2)-expansion method for solving some partial differential equations
In this paper, the improved -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کاملModified F-Expansion Method Applied to Coupled System of Equation
A modified F-expansion method to find the exact traveling wave solutions of two-component nonlinear partial differential equations (NLPDEs) is discussed. We use this method to construct many new solutions to the nonlinear Whitham-Broer-Kaup system (1+1)-dimensional. The solutions obtained include Jacobi elliptic periodic wave solutions which exactly degenerate to the soliton solutions, triangu...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004